澳门威尼斯人赌场官网-澳门网上赌场_百家乐规则_全讯网ceo (中国)·官方网站

學(xué)術(shù)動態(tài)

當(dāng)前位置: 首頁 - 學(xué)術(shù)動態(tài) - 正文

學(xué)術(shù)報告—Dynamical Systems on Networks and their Applications: Perspectives from Population Dynamics

閱讀量:

報 告 人:帥智圣

主 持 人:張曉穎

時    間:2019年6月14日10:00

地    點(diǎn):理學(xué)院五樓大數(shù)據(jù)實(shí)驗(yàn)室

主辦單位:理學(xué)院


報告人簡介:

帥智圣,分別于2001年和2004年在東北師范大學(xué)獲數(shù)學(xué)學(xué)士學(xué)位和應(yīng)用數(shù)學(xué)碩士學(xué)位,并于2010年在加拿大阿爾伯塔大學(xué)獲理學(xué)博士學(xué)位,后獲加拿大自然科學(xué)與工程研究委員會頒發(fā)的博士后獎(NSERC Postdoctoral Fellowship)資助,在維多利亞大學(xué)從事兩年博士后研究。從2012年8月起,任教于美國中佛羅里達(dá)大學(xué),現(xiàn)為該校數(shù)學(xué)系副教授(tenured)。主要研究興趣為微分方程、動力系統(tǒng)、及其在生物數(shù)學(xué)中的應(yīng)用。已在包括Journal of Differential Equations, Journal of Mathematical Biology, Proceedings of the American Mathematical Society, SIAM Journal on Applied Mathematics等國際著名刊物發(fā)表論文30余篇。其成果被同行廣泛引用,論文累計已被引用1700余次。獲多項(xiàng)學(xué)術(shù)、科研和教學(xué)獎勵,其中包括國家優(yōu)秀自費(fèi)留學(xué)生獎學(xué)金(中國),Izaak Walton Killam紀(jì)念獎學(xué)金(加拿大),中佛羅里達(dá)大學(xué)教學(xué)創(chuàng)新(TIP)獎。主持多項(xiàng)科研項(xiàng)目,其中包括美國國家科學(xué)基金委(NSF)和Simons Foundation科研項(xiàng)目。

觀點(diǎn)綜述:

Many large-scale dynamical systems arising from different fields of science and engineering can be regarded as coupled systems on networks. Examples include biological and artificial neural networks, nonlinear oscillators on lattices, complex ecosystems and the transmission models of infectious diseases in heterogeneous populations. Of particular interest is to investigate in what degree and fashion the dynamical behaviors are determined by the architecture of the network encoded in the directed graph. We will address this from population dynamics perspectives.

Specifically, many recent outbreaks and spatial spread of infectious diseases have been influenced by human movement over air, sea and land transport networks, and/or anthropogenic-induced pathogen/vector movement. These spatial movements in heterogeneous environments and networks are often asymmetric (biased). The effects of asymmetric movement versus symmetric movement will be investigated using several epidemiological models from the literature, and the analytical tools employed are from differential equations, dynamical systems to matrix theory and graph theory. These investigations provide new biological insights on disease transmission and control, and also highlight the need of a better understanding of dynamical systems on networks.

地址:中國吉林省長春市衛(wèi)星路6543號 

郵編:130022

吉ICP備050001994號-5

吉公網(wǎng)安備22010402000005號

百家乐官网分析仪有真的吗| 任我赢百家乐官网软件| 原平市| 百家乐现金网排名| 百家乐园百乐彩| 免费百家乐官网预测工具| 皇冠现金网去hgttt| 华人百家乐官网博彩论| 大发888客服电话 导航| 模拟百家乐官网的玩法技巧和规则 | 百家乐网络赌博网址| 百家乐官网能战胜吗| 678百家乐博彩娱乐场| 百家乐官网游戏机压法| 将军百家乐的玩法技巧和规则| 至尊百家乐官网20130402| 卡迪拉娱乐城开户| 百家乐优博娱乐城| 真人百家乐官网赢钱| 棋牌游戏代理| 百家乐娱乐场开户注册| 百家乐官网赌场策略| 即时比分直播| 澳门百家乐765118118| 属鼠做生意办公桌摆貔貅好不好| 百家乐官网视频打麻将| 百家乐园云鼎娱乐网| 红桃K百家乐官网的玩法技巧和规则| 网球比赛比分直播| 澳门百家乐官网| 百家乐投注平台信誉排名| 百家乐官网网上真钱赌场娱乐网规则 | 百家乐平台在线| 百家乐官网专用| 塑料百家乐官网筹码| bet365体育开户| 百家乐赢一注| 做生意必须看风水吗| VIP百家乐官网-挤牌卡安桌板| k7娱乐| 德州扑克3d豪华版|